| Highest vectors of representations (total 2) ; the vectors are over the primal subalgebra. | \(g_{5}-g_{3}+g_{2}\) | \(g_{19}\) |
| weight | \(\omega_{2}\) | \(\omega_{1}+\omega_{2}\) |
| Isotypical components + highest weight | \(\displaystyle V_{\omega_{2}} \) → (0, 1) | \(\displaystyle V_{\omega_{1}+\omega_{2}} \) → (1, 1) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Module label | \(W_{1}\) | \(W_{2}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Semisimple subalgebra component.
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(\omega_{2}\) \(3\omega_{1}-\omega_{2}\) \(\omega_{1}\) \(-\omega_{1}+\omega_{2}\) \(-3\omega_{1}+2\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(0\) \(0\) \(-2\omega_{1}+\omega_{2}\) \(3\omega_{1}-2\omega_{2}\) \(\omega_{1}-\omega_{2}\) \(-\omega_{1}\) \(-3\omega_{1}+\omega_{2}\) \(-\omega_{2}\) | \(\omega_{1}+\omega_{2}\) \(-\omega_{1}+2\omega_{2}\) \(4\omega_{1}-\omega_{2}\) \(2\omega_{1}\) \(2\omega_{1}\) \(\omega_{2}\) \(5\omega_{1}-2\omega_{2}\) \(\omega_{2}\) \(-2\omega_{1}+2\omega_{2}\) \(3\omega_{1}-\omega_{2}\) \(-2\omega_{1}+2\omega_{2}\) \(3\omega_{1}-\omega_{2}\) \(-4\omega_{1}+3\omega_{2}\) \(\omega_{1}\) \(\omega_{1}\) \(\omega_{1}\) \(\omega_{1}\) \(-\omega_{1}+\omega_{2}\) \(-\omega_{1}+\omega_{2}\) \(4\omega_{1}-2\omega_{2}\) \(-\omega_{1}+\omega_{2}\) \(-\omega_{1}+\omega_{2}\) \(4\omega_{1}-2\omega_{2}\) \(-3\omega_{1}+2\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(-3\omega_{1}+2\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(-5\omega_{1}+3\omega_{2}\) \(0\) \(5\omega_{1}-3\omega_{2}\) \(0\) \(0\) \(0\) \(-2\omega_{1}+\omega_{2}\) \(-2\omega_{1}+\omega_{2}\) \(3\omega_{1}-2\omega_{2}\) \(-2\omega_{1}+\omega_{2}\) \(3\omega_{1}-2\omega_{2}\) \(-2\omega_{1}+\omega_{2}\) \(-4\omega_{1}+2\omega_{2}\) \(\omega_{1}-\omega_{2}\) \(-4\omega_{1}+2\omega_{2}\) \(\omega_{1}-\omega_{2}\) \(\omega_{1}-\omega_{2}\) \(\omega_{1}-\omega_{2}\) \(-\omega_{1}\) \(4\omega_{1}-3\omega_{2}\) \(-\omega_{1}\) \(-\omega_{1}\) \(-\omega_{1}\) \(-3\omega_{1}+\omega_{2}\) \(2\omega_{1}-2\omega_{2}\) \(-3\omega_{1}+\omega_{2}\) \(2\omega_{1}-2\omega_{2}\) \(-5\omega_{1}+2\omega_{2}\) \(-\omega_{2}\) \(-\omega_{2}\) \(-2\omega_{1}\) \(-2\omega_{1}\) \(-4\omega_{1}+\omega_{2}\) \(\omega_{1}-2\omega_{2}\) \(-\omega_{1}-\omega_{2}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(\omega_{2}\) \(3\omega_{1}-\omega_{2}\) \(\omega_{1}\) \(-\omega_{1}+\omega_{2}\) \(-3\omega_{1}+2\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(0\) \(0\) \(-2\omega_{1}+\omega_{2}\) \(3\omega_{1}-2\omega_{2}\) \(\omega_{1}-\omega_{2}\) \(-\omega_{1}\) \(-3\omega_{1}+\omega_{2}\) \(-\omega_{2}\) | \(\omega_{1}+\omega_{2}\) \(-\omega_{1}+2\omega_{2}\) \(4\omega_{1}-\omega_{2}\) \(2\omega_{1}\) \(2\omega_{1}\) \(\omega_{2}\) \(5\omega_{1}-2\omega_{2}\) \(\omega_{2}\) \(-2\omega_{1}+2\omega_{2}\) \(3\omega_{1}-\omega_{2}\) \(-2\omega_{1}+2\omega_{2}\) \(3\omega_{1}-\omega_{2}\) \(-4\omega_{1}+3\omega_{2}\) \(\omega_{1}\) \(\omega_{1}\) \(\omega_{1}\) \(\omega_{1}\) \(-\omega_{1}+\omega_{2}\) \(-\omega_{1}+\omega_{2}\) \(4\omega_{1}-2\omega_{2}\) \(-\omega_{1}+\omega_{2}\) \(-\omega_{1}+\omega_{2}\) \(4\omega_{1}-2\omega_{2}\) \(-3\omega_{1}+2\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(-3\omega_{1}+2\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(-5\omega_{1}+3\omega_{2}\) \(0\) \(5\omega_{1}-3\omega_{2}\) \(0\) \(0\) \(0\) \(-2\omega_{1}+\omega_{2}\) \(-2\omega_{1}+\omega_{2}\) \(3\omega_{1}-2\omega_{2}\) \(-2\omega_{1}+\omega_{2}\) \(3\omega_{1}-2\omega_{2}\) \(-2\omega_{1}+\omega_{2}\) \(-4\omega_{1}+2\omega_{2}\) \(\omega_{1}-\omega_{2}\) \(-4\omega_{1}+2\omega_{2}\) \(\omega_{1}-\omega_{2}\) \(\omega_{1}-\omega_{2}\) \(\omega_{1}-\omega_{2}\) \(-\omega_{1}\) \(4\omega_{1}-3\omega_{2}\) \(-\omega_{1}\) \(-\omega_{1}\) \(-\omega_{1}\) \(-3\omega_{1}+\omega_{2}\) \(2\omega_{1}-2\omega_{2}\) \(-3\omega_{1}+\omega_{2}\) \(2\omega_{1}-2\omega_{2}\) \(-5\omega_{1}+2\omega_{2}\) \(-\omega_{2}\) \(-\omega_{2}\) \(-2\omega_{1}\) \(-2\omega_{1}\) \(-4\omega_{1}+\omega_{2}\) \(\omega_{1}-2\omega_{2}\) \(-\omega_{1}-\omega_{2}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{3\omega_{1}-\omega_{2}}\oplus M_{\omega_{2}}\oplus M_{\omega_{1}}\oplus M_{2\omega_{1}-\omega_{2}}\oplus M_{3\omega_{1}-2\omega_{2}} \oplus M_{-\omega_{1}+\omega_{2}}\oplus 2M_{0}\oplus M_{\omega_{1}-\omega_{2}}\oplus M_{-3\omega_{1}+2\omega_{2}}\oplus M_{-2\omega_{1}+\omega_{2}} \oplus M_{-\omega_{1}}\oplus M_{-\omega_{2}}\oplus M_{-3\omega_{1}+\omega_{2}}\) | \(\displaystyle M_{4\omega_{1}-\omega_{2}}\oplus M_{5\omega_{1}-2\omega_{2}}\oplus M_{\omega_{1}+\omega_{2}}\oplus 2M_{2\omega_{1}}\oplus 2M_{3\omega_{1}-\omega_{2}} \oplus 2M_{4\omega_{1}-2\omega_{2}}\oplus M_{5\omega_{1}-3\omega_{2}}\oplus M_{-\omega_{1}+2\omega_{2}}\oplus 2M_{\omega_{2}}\oplus 4M_{\omega_{1}} \oplus 4M_{2\omega_{1}-\omega_{2}}\oplus 2M_{3\omega_{1}-2\omega_{2}}\oplus M_{4\omega_{1}-3\omega_{2}}\oplus 2M_{-2\omega_{1}+2\omega_{2}} \oplus 4M_{-\omega_{1}+\omega_{2}}\oplus 4M_{0}\oplus 4M_{\omega_{1}-\omega_{2}}\oplus 2M_{2\omega_{1}-2\omega_{2}}\oplus M_{-4\omega_{1}+3\omega_{2}} \oplus 2M_{-3\omega_{1}+2\omega_{2}}\oplus 4M_{-2\omega_{1}+\omega_{2}}\oplus 4M_{-\omega_{1}}\oplus 2M_{-\omega_{2}}\oplus M_{\omega_{1}-2\omega_{2}} \oplus M_{-5\omega_{1}+3\omega_{2}}\oplus 2M_{-4\omega_{1}+2\omega_{2}}\oplus 2M_{-3\omega_{1}+\omega_{2}}\oplus 2M_{-2\omega_{1}} \oplus M_{-\omega_{1}-\omega_{2}}\oplus M_{-5\omega_{1}+2\omega_{2}}\oplus M_{-4\omega_{1}+\omega_{2}}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Isotypic character | \(\displaystyle M_{3\omega_{1}-\omega_{2}}\oplus M_{\omega_{2}}\oplus M_{\omega_{1}}\oplus M_{2\omega_{1}-\omega_{2}}\oplus M_{3\omega_{1}-2\omega_{2}} \oplus M_{-\omega_{1}+\omega_{2}}\oplus 2M_{0}\oplus M_{\omega_{1}-\omega_{2}}\oplus M_{-3\omega_{1}+2\omega_{2}}\oplus M_{-2\omega_{1}+\omega_{2}} \oplus M_{-\omega_{1}}\oplus M_{-\omega_{2}}\oplus M_{-3\omega_{1}+\omega_{2}}\) | \(\displaystyle M_{4\omega_{1}-\omega_{2}}\oplus M_{5\omega_{1}-2\omega_{2}}\oplus M_{\omega_{1}+\omega_{2}}\oplus 2M_{2\omega_{1}}\oplus 2M_{3\omega_{1}-\omega_{2}} \oplus 2M_{4\omega_{1}-2\omega_{2}}\oplus M_{5\omega_{1}-3\omega_{2}}\oplus M_{-\omega_{1}+2\omega_{2}}\oplus 2M_{\omega_{2}}\oplus 4M_{\omega_{1}} \oplus 4M_{2\omega_{1}-\omega_{2}}\oplus 2M_{3\omega_{1}-2\omega_{2}}\oplus M_{4\omega_{1}-3\omega_{2}}\oplus 2M_{-2\omega_{1}+2\omega_{2}} \oplus 4M_{-\omega_{1}+\omega_{2}}\oplus 4M_{0}\oplus 4M_{\omega_{1}-\omega_{2}}\oplus 2M_{2\omega_{1}-2\omega_{2}}\oplus M_{-4\omega_{1}+3\omega_{2}} \oplus 2M_{-3\omega_{1}+2\omega_{2}}\oplus 4M_{-2\omega_{1}+\omega_{2}}\oplus 4M_{-\omega_{1}}\oplus 2M_{-\omega_{2}}\oplus M_{\omega_{1}-2\omega_{2}} \oplus M_{-5\omega_{1}+3\omega_{2}}\oplus 2M_{-4\omega_{1}+2\omega_{2}}\oplus 2M_{-3\omega_{1}+\omega_{2}}\oplus 2M_{-2\omega_{1}} \oplus M_{-\omega_{1}-\omega_{2}}\oplus M_{-5\omega_{1}+2\omega_{2}}\oplus M_{-4\omega_{1}+\omega_{2}}\) |
| 2/3 & | -1\\ |
| -1 & | 2\\ |